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Abstract: This paper discusses issues faced in using epidemiologic data to develop quantitative estimates of risk from 

specified patterns of exposure to a toxicant. We focus on use of data from cohort studies with binary endpoints 

(occurrence or non-occurrence of disease). Relative advantages of Cox regression and Poisson regression are presented. A 

general form of exposure metric is presented, and criteria for selecting an appropriate metric are discussed. Advantages 

and disadvantages of various dose-response models are discussed. It is argued that, unless low-dose linearity of the dose 

response can be ruled out on non-statistical grounds, then bounds for low-dose risk should incorporate low-dose linearity; 

a sequential procedure for computing such bounds is illustrated. Limitations in exposure data and their impact on risk 

assessments are discussed. Issues arising when using meta-analytic techniques to combine data from multiple 

epidemiologic studies are discussed. Limitations in risk assessments resulting from reliance upon published results alone 

are described. Methods for converting from measures of risk used in epidemiologic studies (e.g., relative risk) to measures 

appropriate for a risk assessment (e.g., additional lifetime probability of disease occurrence resulting from a specific 

exposure pattern) are described in detail. Several examples from the asbestos epidemiologic literature are presented to 

illustrate these issues. 
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INTRODUCTION 

 Usually the primary goal of an epidemiologic study is to 
determine if a causal link exists between exposure to a 
potentially toxic substance and disease in a defined 
population. If such a link is established the study may be 
subsequently applied in a risk assessment to quantify the 
relationship between exposure and risk to health in a target 
population that has demographic characteristics and 
exposure patterns that differ from those in the epidemiologic 
study. If multiple epidemiologic studies are available, the 
risk assessment should account for the totality of the 
information, perhaps by formally combining of data from 
multiple studies in a meta analysis. Measures of risk most 
often used in epidemiologic studies, such as relative risk, are 
normally not adequate for a risk assessment, which requires 
some measure of added risk. 

 Thus the analyses needed to support a quantitative risk 
assessment are usually different than, and often more 
extensive than, the analyses needed to support the initial 
goals of an epidemiologic study. Similarly, the data needs of 
the risk assessment may be more stringent. Whereas a link 
between exposure and health risk can perhaps be established 
using exposure surrogates such as duration of exposure, 
more specific exposure measures are needed to support a risk 
assessment. 
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 In this paper we discuss issues concerning the use of 
epidemiologic data to develop quantitative estimates of the 
lifetime risk of harm from given patterns of exposure to a toxic 
substance. Particular emphasis is given to estimating low-dose 
risk which might be useful in setting exposure standards. Issues 
addressed include selection of a statistical procedure for 
analyzing the epidemiologic data, selection of a dose-response 
model to use in the statistical procedure, converting results 
obtained using such models to estimates of additional lifetime 
risk from specified exposure patterns, and special issues related 
to estimating low-dose risk. These issues are illustrated using 
examples from the asbestos epidemiologic literature. (However, 
we caution that these examples are presented for pedagogical 
purposes only and are not intended for use in regulation of 
asbestos.) 

 If the response is a binary variable (presence or non-
presence of a particular disease) a risk assessment usually 
estimates the additional probability of disease. If the response is 
a continuous variable (e.g., IQ) the outcome of the risk 
assessment may be a summary measure of that continuous 
response (e.g., the mean change in IQ from a given pattern of 
exposure). Alternatively, a continuous response can be 
converted into a binary one (e.g., the additional proportion of a 
population with an IQ below a certain cutoff). Here we focus on 
quantifying the additional lifetime probability of a binary 
response from given exposure patterns, although much of the 
discussion will apply to other measures of risk. We also focus 
on use of data from cohort studies. 

 Despite the greater data needs of the risk assessment, risk 
assessments are often based only on published summaries of 
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results from the epidemiologic investigations. This paper 
includes a discussion of methods for dealing with published 
data and gives examples of limitations of risk assessments due 
to lack of access to the unsummarized underlying data from 
epidemiologic studies. 

SELECTION OF A STATISTICAL METHOD 

 Cox regression [1] and Poisson regression [2] are commonly 
used statistical methods for analyzing cohort data. In Poisson 
regression the person-years of observation are divided into cells 
defined by non-overlapping ranges of explanatory variables 
(e.g., gender, age, year, and exposure-related variables). A 
representative value for each variable is assigned to each cell 
(e.g., the average value in the cell). A regression involving these 
variables is conducted using the assumption that the number of 
cases occurring in each cell is Poisson distributed, with the 
mean response in a cell predicted by the regression model. 
Baseline rates (no exposure) can be estimated from the cohort 
data, or else external rates (e.g., national) can be incorporated 
into the regression model. 

 In Cox regression the data are categorized into risk sets 
defined by the individuals remaining in the study at the time of a 
death from the cause of interest. Individual responses are only 
compared at the same time so the time variable is completely 
controlled in the analysis. For diseases that vary more strongly 
with age than with calendar year, age is a more appropriate 
definition of the time variable than calendar time for defining 
risk sets. Calendar time can be controlled, if necessary, by being 
included as a variable in the regression model. In Cox 
regression only the risk relative to the baseline rate is estimated 
and the baseline rate itself is not estimated. 

 One advantage of Cox regression is that, unlike Poisson 
regression, it does not require arbitrarily dividing the data into 
cells. However, any dependence of the results of a Poisson 
regression on the cell definitions can be minimized by making 
the subdivisions that define the cells sufficiently fine. In a large 
cohort, computation time can become an issue with Cox 
regression, especially if some of the explanatory variables (e.g., 
exposure variables) are time-dependent. Whereas Cox 
regression is limited to regression models for relative risk, 
Poisson regression is more flexible and can be used with a much 
wider class of risk models. This can be an important advantage, 
especially when conducting a risk assessment rather than testing 
for a dose-rate effect. Also, the ability of Poisson regression to 
incorporate external rates into the modeling can be useful, as 
illustrated in the following example. 

 In addition to Cox and Poisson regression, a third alternative 
is to compute the full likelihood of the data in which each 
individual makes an independent contribution, and to estimate 
parameters by maximizing the resulting log-likelihood. 
Examples include risk assessments for leukemia from exposure 
to benzene [3, 4] and for mesothelioma from exposure to 
asbestos [5]. 

EXAMPLE: COMPARISON OF POISSON AND COX 
REGRESSION IN MODELING LUNG CANCER IN AN 

ASBESTOS-EXPOSED COHORT 

 A cohort of 6,358 men employed at a crocidolite mine 
and mill in Wittenoom, Australia between 1943 and 1946 
experienced an excess of mortality from mesothelioma and 
lung cancer [6-12]. In a follow-up of the cohort through the 

year 2000 [5] 302 lung cancer deaths were recorded. The 
data base contains, in addition to cause of death information, 
date of birth, date last known to be alive, date of death, dates 
of beginning and ending of employment and estimates of the 
average intensity of exposure to crocidolite fibers (fibers per 
milliliter of air) during employment. 

 The U.S. EPA model for asbestos-related lung cancer 
[13] assumes that the relative risk of lung cancer mortality is 
given by 

     (Eq. 1) 

where C10 is cumulative exposure to asbestos (fiber-
years/ml) lagged 10 years (i.e., exposures in the most recent 
ten years are not counted) and KL is the estimated potency 
parameter for lung cancer. Since this is a relative risk model 
it can be fit using either Cox regression or Poisson 
regression. 

 An expanded version of (Eq. 1), 

    (Eq. 2) 

includes a background parameter, , which allows for the 
possibility that the background mortality rates appropriate 
for the cohort differed from those of Australian men in 
general. This expanded model is not needed with Cox 
regression, which estimates risk relative to the (study-
specific) baseline. 

 Berman and Crump [5] fit both models to the Wittenoom 
data using Poisson regression. Age  and 
calendar year specific lung cancer mortality rates for 
Australian men were used for background rates. To compare 
with these results, we fit Eq. 1 to the Wittenoom data using 
Cox regression. The estimate of KL from the Cox regression 
agreed very closely with the estimate from the Poisson 
regression analysis in which  was estimated (Table 1). 
However, the Poisson regression provided information not 
available from the Cox regression about the relationship 
between the lung cancer rate in the general population and 
the baseline rate estimated for the cohort. The Poisson 
regression indicated that the baseline rate in the cohort was 
almost three times that of men in the general Australian 
population. This factor seems too large to be due to 
differences in smoking habits. Moreover, the evidence for a 
dose response in lung cancer with increasing exposure was 
somewhat limited, although statistically significant, even 
though exposures were very high in this cohort [5]. On the 
other hand, if the baseline rate is restricted to be the same as 
in the general Australian male population (  = 1), the 
estimate of KL is about ten times higher than when  is 
estimated (Table 1). The model defined by (Eq. 2) provides a 
reasonable fit to the data when  is estimated (Fig. 1, solid 
line) but under-predicts the response at low exposures and 
over-predicts at high exposures when  = 1 (Fig. 1, dotted 
line). 

 This observed pattern may be partially due to 
misclassification of exposure along with higher levels of 
smoking in the cohort. This uncertainty, coupled with the 
large difference between the estimate of KL with  estimated 
and with  = 1 translates into an uncertainty in the estimate 
of KL. Berman and Crump [5] dealt with this uncertainty in 
an ad hoc fashion by limiting  to be no larger than 2.0. 
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 This example illustrates that a Poisson regression can 
provide information that cannot be deduced from a Cox 
regression. It also illustrates that if a background parameter 
(e.g., ) is included in a Poisson regression, external 
background mortality rates can be included in the model to 
control for age, calendar time, race and gender without 
requiring the assumption that background rates in the cohort 
be identical with the external rates. Controlling for these 
covariates in this way can provide good control for these 
covariates, and at the same time result in a much simpler 
model with fewer explanatory variables to estimate. This 
type of regression analysis can be particularly useful in 
controlling statistical variability when the cohort study is of 
modest size. 

SELECTION OF AN EXPOSURE METRIC 

 Developing a dose-response model requires specifying 
one or more summary measures of exposure which we will 
refer to as “exposure metrics.” Ideally we would like to have 
a single summary metric that contains all of the information 
needed to inform dose response, i.e., a metric such that any 
additional exposure information would be superfluous with 
respect to characterizing the effect of exposure. 
Unfortunately, there is no known way to identify such a 
metric (assuming that such a metric exists). 

 Metrics that are commonly applied in epidemiologic 
studies include cumulative exposure, average exposure, peak 

exposure, and duration of exposure. Often several such 
metrics may be used to determine which ones show stronger 
statistical associations between exposure and a health 
outcome. Such exploratory analyses can be particularly 
useful in identifying an exposure effect when, as is often the 
case, exposure information is limited or of poor quality, 

 However, requirements for an exposure metric in risk 
assessment are more stringent. For a metric to be useful in 
risk assessment, it should account for both the duration and 
intensity of exposure. For example, average exposure is 
often calculated by averaging only over the period of 
exposure. Thus working for only one day exposed to 1 ppm 
and working for 40 years continuously exposed to 1 ppm 
would both correspond to an average exposure of 1 ppm, 
although they are unlikely to present the same risk. Other 
metrics that don’t integrate duration and intensity of 
exposure include duration of exposure and peak exposure. 
Although such metrics generally are not directly useful in 
risk assessment models, results from their use could be 
helpful in choosing an appropriate exposure metric. 

 A fairly general form for an exposure metric that 
integrates duration and intensity can be defined as 

     (Eq.3) 

where X(t) is the value of the exposure metric at time t, E(u) 
is exposure intensity at time u, g allows for a non-linear 
effect of exposure intensity, and h(t,u) is a weighting 

Table 1. Results from Applying the U.S. EPA Lung Cancer Model (Eqs. 1 and 2) to Data on a Cohort of Workers Exposed to 

Crocidolite Asbestos at Wittenoom, Australia 

 

Type of Analysis  (90% CI) KL (90% CI) 

Cox (this paper) ---- --- 0.0044 (0.0019, 0.0076) 

Poisson [5]  2.81 (2.49, 3.14) 0.0042 (0.0016, 0.0076) 

Poisson [5] 1(fixed) --- 0.043 (0.034, 0.053) 

 

 

Fig. (1). Fit of U.S. EPA lung cancer model (Eq. 2) to data on a cohort of workers exposed to crocidolite asbestos at Wittenoom, Australia. 

Vertical bars indicate 90% confidence intervals [5]. 
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function that gives the effect at time t relative to the 
exposure at time u. Several common metrics are special 
cases of Eq. 3. If g(E) = E and h(t,u) = 1, then 

    (Eq. 4) 

which is cumulative exposure. If g(E) = E and h(u,t) = 1/t 
then 

     (Eq. 5) 

which is average exposure between 0 and t. If g(E) = E and 

   (Eq. 6) 

then 

   (Eq. 7) 

 If L = 10, E(t) = E (constant) for t between 0 and Dur 
(exposure duration) and zero otherwise, then this becomes 
the exposure metric used in the U.S. EPA [13] model for 
mesothelioma from asbestos exposure, 

(Eq. 8) 

 Alternatively, Eq. 7 can be viewed as a more general 
form of Eq. 8 that applies to non-constant exposure. With the 
metrics defined by Eqs. 7 and 8, the effect of exposure in a 
given time increment increases indefinitely as the square of 
elapsed time from when the exposure occurred. To model an 
exposure effect that reaches a peak after the exposure and 
then decreases to zero, one could use a weighting function of 
the form h(t,u) = (t u)

K
exp[ (t u)] [14]. To model an 

effect of peak exposure (exposure that has no effect until the 
exposure intensity exceeds a minimum value, Emin), one 
could define, e.g., 

   (Eq. 9) 

 Alternatively, g could represent a pharmacokinetic model 
that relates external exposure to exposure to some internal 
organ. 

 The effect of simultaneous exposure to multiple toxicants 
can be accounted for in a risk assessment by assigning an 
exposure metric for each toxicant and incorporating these 
metrics in a single dose-response model. A risk assessment 
for exposure to asbestos fibers that included a number of 
epidemiologic studies, each with a unique mix of fiber types 
and distribution of fiber sizes, illustrates such a case [15]. In 
this risk assessment, fibers were placed in one of several 
categories defined by length, width and type (chrysotile or 
amphibole), and each category of fibers was treated as a 
unique toxicant with its own exposure metric. 

CHOICE OF DOSE-RESPONSE MODEL: GENERAL 
CONSIDERATIONS 

 A dose-response model relates an exposure metric, X, to 
some measure of risk such as relative risk. The term “model” 
is often used loosely to refer to the statistical fitting method, 
as in a “Poisson model” or a “Cox model.” However, many 
different dose-response models can be applied using either 
Cox or Poisson regression techniques, and, as we have 

already noted, the same dose-response model can often be fit 
with either type of regression. 

 Exposures for which risk estimates are needed for setting 
exposure standards will generally require extrapolation 
below the range of exposures for which exposure-related 
adverse responses were identified in an epidemiologic study. 
In these cases the low-dose properties of the dose-response 
model chosen will be critically important. The choice of 
model should take account of the biological plausibility of 
the selected dose response, particularly in the low-dose 
region. This is much less of a concern in an analysis that 
only seeks to determine whether or not a dose-related effect 
is present. 

 General low-dose curve shapes that have some biological 
plausibility range from linear to sub-linear, which includes a 
threshold curve shape  the most extreme version of sub-
linearity. A linear low-dose curve shape refers to a dose 
response that has a positive, finite slope at zero dose; a sub-
linear (sometimes referred to as non-linear) low-dose curve 
shape refers to a dose response that has a slope of zero at 
zero dose (e.g., dose

K
, K > 1). “Threshold” is a special case 

of sub-linearity that refers to a dose response whose slope 
remains zero over a dose interval ranging from zero dose up 
to some positive dose termed the threshold dose. A supra-
linear low-dose curve shape refers to a dose response that 
has an infinite slope at zero dose (e.g., dose

K
, 0 < K < 1). 

Such dose responses are generally thought to be biologically 
implausible. 

 Any set of dose-response data is statistically compatible 
with both threshold and low-dose linear curve shapes. Fig. 
(2) provides a graphical illustration of this point using a 
hypothetical data set with five dose groups each containing 
50 subjects. There is no response in the control group or at 
the four lowest doses, but an increased response at the 
highest dose. As the figure shows, these data are well fit both 
by a dose-response model that is linear up through the four 
lowest doses (solid line) and one that has a threshold at a 
dose of 4 (dotted line). In fact it is true of both the low-dose 
linear model and the threshold model that the observed 
response at each dose is the most likely response predicted 
by the model. This illustrates a general result that does not 
depend upon the details of this example: every set of dose-
response data is compatible with both low-dose linear and 
threshold models. 

 Statistical methods for estimating thresholds have been 
proposed (e.g., [16]) and such methods have been applied to 
epidemiologic data ( e.g., [17]). These methods can be used 
to test whether data are consistent with a zero threshold (i.e., 
no threshold) or, equivalently, whether a statistical 
confidence interval for the threshold includes zero. Such 
methods employ a specific functional form for the dose 
response, usually the form shown in Fig. (2), which assumes 
that risk increases linearly with dose for doses that exceed 
the threshold. Applying this model to the data in Fig. (2) 
(dotted line in Fig. 2) results in a 95% statistical lower bound 
of 3.5 for the threshold. Likewise the hypothesis that there is 
no threshold (threshold = 0) is firmly rejected (p = 0.0002). 
Nevertheless, as Fig. (2) shows, non-threshold dose 
responses can fit these data quite adequately. This 
demonstrates that these statistical methods are highly model 
dependent. They provide statistical evidence for a threshold 
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only if one is willing to accept that the underlying dose 
response has the assumed form – one that increases linearly 
in dose for doses above the threshold. Since we never have 
such detailed knowledge about the shape of the true dose 
response, statistical tests for the existence of a threshold are 
apt to be misleading. 

 This example illustrates that even if a threshold exists, it 
will not be possible to bound its estimate away from zero 
without making detailed and generally unverifiable 
assumptions about the shape of the dose response at doses 
exceeding the threshold. Since some amount of low-dose 
linearity is always consistent with the data, and 
supralinearity is implausible, unless low-dose linearity is 
ruled out on non-statistical grounds, conservative estimates 
of low-dose risk need to incorporate low-dose linearity. 
Statistical methods that can be useful in making such 
estimates are discussed in the next section. 

CHOICE OF DOSE RESPONSE MODEL: 
APPLICATION 

 Dose-response models used in epidemiologic studies are 
often chosen out of convenience rather than with 
consideration of low-dose properties. One commonly used 
dose-response model is the log-linear model for relative risk, 

                 (Eq. 10) 

where X is the exposure metric and  a parameter that 
gauges the potency of the toxic substance. This model can be 
conveniently applied using either Poisson or Cox regression 
implemented using one of a number of standard software 
programs, which can also accommodate additional 
explanatory variables such as age, gender, etc. With the dose 
response defined by Eq. 10, log RR is linear in dose. The 
log-untransformed relative risk has a slope of  at zero dose 
and consequently is linear at low dose, although it curves 
increasingly upward with increasing dose. The linear relative 
risk model, 

                 (Eq. 11) 

which is used less often than the log-linear model, has a 
slope of  at all doses. 

 Epidemiological dose-response data frequently exhibit 
downward curvature and neither a log-linear nor a linear 
dose-response model provides an adequate fit. Several 
reasons have been suggested to explain this effect, including 
1) mismeasurement of high exposures due to, for example, 
not accounting for respirator use by highly exposed 
individuals, 2) saturation of metabolic pathways at high 
exposures, 3) depletion of susceptible individuals at high 
exposures, and 4) bias resulting from the healthy worker 
survivor effect [18]. A dose response that is downward 
curving due to saturation of metabolic pathways could be 
linear if a more appropriate dose metric based on internal 
metabolite concentrations were used. The depletion of 
susceptible individuals at high exposures might occur if the 
susceptible individuals succumbed to other related effects, 
prematurely removing them from the risk pool for the 
endpoint of interest, or if they tended to leave employment 
or switch to jobs having lower exposures. None of these 
reasons argues that there is a downward curving relationship 
between the “right” exposure metric and the “true” response 
rate. Rather, each of those explanations merely suggest why 
there might be apparent downward curving relationships 
between either A) an exposure metric that is less than 
optimal because of measurement or relevance problems and 
a reasonable measure of response (reasons 1 and 2), or B) a 
reasonable exposure metric and a mismeasured response rate 
(reasons 3 and 4). Of course, more than one of these reasons 
may contribute to the apparent curve shape. 

 When a dose response curves downward, a better fit and 
stronger evidence of an exposure effect is often obtained by 
applying the log-linear model (Eq. 10) to log-transformed 
exposures, resulting in the model 

                (Eq. 12) 

 If  < 1 this model exhibits downward curvature, which 
allows it to fit downward curving dose-response data better 
than either a log-linear (Eq. 10) or linear (Eq. 11) dose-
response model. Even though this model can be useful in 
testing for an exposure effect, it may not be a good choice if 
the goal is to estimate low-dose risk. When  < 1 this model 
is supra-linear at low dose (has an infinite slope at X = 0). 

 

Fig. (2). Illustration that any set of dose-response data is statistically compatible with both threshold and low-dose linear curve shapes. 

Vertical bars indicate 90% confidence intervals. 
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Moreover, rather than predicting a relative risk of 1.0 at zero 
exposure (X = 0), as it should, this model predicts a relative 
risk of zero, which nonsensically implies that an unexposed 
individual is at infinitely less risk than one who is exposed. 

 If there are unexposed individuals in the cohort, Ln(X) 
cannot be calculated (although as just noted, the model (Eq. 
12) predicts RR = 0 in this case), and to allow the calculation 
to proceed when using standard statistical software, a small 
amount, c, is sometimes added to the exposure variable, 
resulting in the adjusted model 

               (Eq. 13) 

 Although this model is linear at low dose, the relative 
risk is 1 at zero exposure (X = 0) only if c = 1. 

METHODS FOR BOUNDING LOW-DOSE RISK 

 As noted earlier, low-dose linearity can never by ruled 
out on statistical grounds. If low-dose linearity also cannot 
be ruled out on non-statistical grounds, upper bounds on 
low-dose risk should allow for low-dose linearity. If the 
linear dose-response model (Eq. 11) adequately describes the 
data then a fit of this model to the entire data set could 
reasonably be used to set an upper bound for low-dose risk. 

 When a linear model does not describe epidemiologic 
adequately, it is often because the dose response exhibits 
downward curvature. One approach for dealing with 
downward curving data is to apply a piecewise linear model 
composed of straight lines connected end to end, one for 
lower doses that has a higher slope and one for higher doses 
with a lower slope [18]. However, the high dose data where 
the dose response is clearly downward curving are unlikely 
to be informative about the low-dose slope and including 
these data in the fitting could bias the estimate of the low-
dose slope. The same can be said for a model that uses log-
transformed exposure (Eq. 13). 

 Here we suggest an alternative that involves estimating 
the low-dose slope from a fit only to data in a lower dose 
range. A decision must be made about which data to include 
in such an analysis and there is a trade-off with respect to 
selecting the cutoff for data inclusion (data with exposures 
below the cutoff are included; data with exposures above the 
cutoff are excluded). If the cutoff is too high, then one fails 
to eliminate the undesirable consequences of including data 
that are problematic (for one or more of the reasons cited 
above). If the cutoff is set too low, then the slope estimate 
will be statistically unstable because of too few observations. 

 To determine an appropriate cutoff, we suggest a 
sequential procedure. First a linear dose-response model 
(e.g., Eq. 11) is expanded by replacing the exposure metric X 
by X

K
 and this expanded model is fit to the data set. If this 

model finds significant downward curvature (i.e., the 
estimate of K is statistically significantly less than 1.0), the 
data corresponding to the highest exposures are eliminated 
and the expanded model is refit to the remaining data. If the 
estimate of K is still significantly less than 1.0 this process is 
repeated until the estimate of K is not statistically less than 
1.0. Then the remaining data are fit to the linear model (with 
K = 1) and the resulting estimate of  is used as the estimate 
of the low-dose slope. 

 The potential advantages of this approach can be seen in 
relation to the reasons cited above for apparent downward 
curvature in the relationship between exposure and response. 
If the exposures in the highly exposed groups are 
misclassified, e.g., due to respirator use, resulting in 
overestimation to some unknown degree, then the procedure 
described above removes the most problematic data from the 
analysis. If the misclassification of exposure is because of 
saturable metabolism, then focusing attention on the lower 
exposures corresponds to the exposure levels for which 
saturation is less of an issue, and for which linear estimation 
of metabolism is more appropriate. If the apparent 
downward curvature is due to loss (or shifting) of susceptible 
individuals, this again eliminates from consideration those 
dose groups for which the observed response would tend to 
be less representative. To the extent that the healthy worker 
effect is more pronounced or problematic for highly exposed 
individuals (e.g., because one has to be healthier in general 
to tolerate those higher exposures) then this procedure would 
also tend to circumvent that concern. 

EXAMPLE: ESTIMATING THE LOW-DOSE SLOPE 
OF THE MESOTHELIOMA DOSE RESPONSE FROM 

ASBESTOS EXPOSURE IN WITTENOOM, AUSTRA-
LIA COHORT 

 In the Wittenoom, Australia cohort described earlier, 222 
deaths from pleural or peritoneal mesothelioma were 
recorded. (See [5,19] and references therein for further 
details.) Berman and Crump [5] fit the U.S. EPA 
mesothelioma dose-response model [13] to these data. For a 
fixed occupational exposure to E fibers/ml, for duration of 
Dur years, this model predicts a yearly mesothelioma 
mortality rate at t years from first exposure of KMX(t), where 
the exposure metric X(t) is defined by Eq. 8, and KM is an 
estimated parameter. To test the assumption that the 
mortality rate is proportional to the exposure intensity E, the 
model was expanded by replacing E by E

K
. In this expanded 

model the non-linearity parameter K was estimated as K = 
0.47 and was significantly less than 1.0 (p < 0.0001). The fit 
with K = 0.47 is reasonable, but with K = 1 the model under-
predicts the mesothelioma mortality rate at low exposures 
and over-predicts at higher exposures (Fig. 3). Estimates of 
lifetime risk of mesothelioma death from lifetime exposure 
to 0.00023 fibers/ml computed using methods described in 
the Appendix (details not provided) differ by a factor of 260 
(0.00072 for K = 1 and 0.19 for K = 0.47). With K=1 and 
exposure intensity log-transformed (replacing E by Ln(1 
+ E) in Eq. 8) the fit is improved over that of the linear 
model, as expected, and the corresponding risk estimate is 
0.0065 which is 9 times larger than the estimate with K=1 
and 29 times smaller than the estimate of K = 0.47 derived 
from the complete data set. 

 Table 2 shows the results of analyses after successively 
restricting the analysis to workers assigned lower exposures. 
As workers with higher exposures were successively 
eliminated, the exposure response remained significantly 
non-linear until only exposures  8 fibers/ml remained in the 
analysis. The potency estimate, KM, increased almost four-
fold (from 12.2 to 45.8) as the analysis went from no 
restrictions to including only exposures  8 fibers/ml. Also, 
the width of the statistical confidence interval for KM 
increased as the number of data decreased. 
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 The non-linearity parameter K remained below 1.0 even 
when exposures were restricted to  5 fibers/ml. The largest 
obtained estimate of KM was 110, which occurred in the 
analysis restricted to exposures  1 fiber/ml, which was the 
lowest exposure assigned to any worker. Misclassification of 
exposure may be partially responsible for consistent 
estimates of K < 1 and corresponding lack of fit of the linear 
model (K = 1), just as it may also have been responsible for 
the elevated estimate of  found earlier when the lung cancer 
model (Eq. 2) was applied to the Wittenoom data. Correcting 
for exposure errors or estimating the magnitude of their 
effect is very difficult without making strong assumptions or 
without more information than is available regarding 
exposures in this cohort. Absent additional information the 
results in Table 2 suggest an uncertainty of perhaps an order 
of magnitude in the value of KM. Since the model predicts  
 

that risk at low exposures will vary linearly with KM, a 
similar range of uncertainty will apply to the risk estimates 
as well. 

MODELS FOR DATA SHOWING A DOSE-RATE 
EFFECT 

 By a dose-rate effect we mean a non-linearity in the 
exposure response whereby a given increase in intensity of 
exposure will cause a greater than proportional increase in 
risk. An example would be applying an exposure metric of 
the form of (Eq. 3) with g(E) = E

3
. If a dose rate effect is 

present then use of a metric such as cumulative exposure will 
overestimate low-dose risk. A dose-rate effect is plausible 
for some health effects. For example, silica-induced 
silicosis—a type of pneumoconiosis that causes lung fibrosis  
 

 

Fig. (3). Observed mesothelioma death rate vs exposure intensity compared to expected rates based on a linear dose-response model (K = 1) 

and a non-linear model (K = 0.47). Based on a cohort of workers exposed to crocidolite asbestos at Wittenoom, Australia. Vertical bars 

indicate 90% confidence intervals [5]. 

Table 2. Tests for Non-Linearity (K <1) and Estimates of Low-Dose Slope (KM) in the U.S. EPA Mesothelioma Model Applied to 

Data on a Cohort of Workers Exposed to Crocidolite Asbestos at Wittenoom, Australia [5, 12] 

 

p-Value for 

 Non-Linearity  

Estimate from Linear  

Model (K = 1) 
Including Exposures 

Number of  

Subjects 

Number of  

Mesotheliomas 

Nonlinear  

Parameter K 
(Test of K = 1) KM (90% CI) 

KM/[KM Using All Data] 

all 6238 222 0.46 <0.0001 12.2 (10.9,13.6) 1 

100 fibers/ml 5946 198 0.41 <0.0001 12.8 (11.3,14.3) 1.0 

70 fibers/ml 5515 169 0.36 <0.0001 14.6 (12.8,16.5) 1.2 

50 fibers/ml 5095 145 0.23 <0.0001 15.1 (13.1,17.2) 1.2 

20 fibers/ml 4276 112 0.26 <0.0001 21.1 (18,24.6) 1.7 

10 fibers/ml 2659 72 0.48 0.016 32.2 (26.4,38.9) 2.6 

8 fibers/ml 1058 27 0.52 0.12 45.8 (32.8,61.8) 3.8 

5 fibers/ml 934 19 0.31 0.044 43.9 (29.3,62.6) 3.6 

1 fibers/ml 381 6 1.00 1.0 110.0 (51.7,201.5) 9.0 
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and shortness of breath—may have a dose-rate effect due to the 
ability of high concentrations of silica in the lungs to interfere 
with clearance by alveolar macrophages. 

 A dose-rate effect can be demonstrated as recommended 
above for a downward curving dose response, except that the 
statistical test is for K > 1 rather than K < 1. The sequential 
procedure for identifying a low-exposure range consistent with 
linearity can also be used, but testing for K > 1. 

 Non-sequential approaches were applied by Hughes et al. 
[20] and Buchanan et al. [21] in modeling risk of silicosis 
(probability of a positive radiograph) among silica-exposed 
workers. Although these were studies of different cohorts and 
used different definitions of a positive radiograph, both studies 
found that the dose-response slope based on cumulative 
exposure was significantly higher among workers exposed to 
higher concentrations of silica (> 0.5 mg/m

3
 by Hughes et al. 

and > 2 mg/m
3
 by Buchanan et al.) than to lower 

concentrations. Both analyses applied logistic models. 
However, whereas the Buchanan et al. model had a finite low-
dose linear slope of 0.0035 (g-h/m

3
)
-1

, the Hughes et al. model 
was supra-linear at low dose. 

USE OF BIOLOGICALLY-BASED DOSE-RESPONSE 
(BBDR) MODELS IN ESTIMATING LOW-DOSE RISK 

 BBDR models describe biological processes at the cellular 
and molecular level to link external exposure to an adverse 
response. A number of cancer risk assessments in the literature 
have applied the two-stage clonal expansion model of cancer 
[22] to epidemiologic data (e.g., [23,24]. This model accounts 
for mutation of normal cells to initiated cells, clonal expansion 
of initiated cells, and mutation of initiated cells to fully 
malignant cells. The incidence or mortality rate of cancer is 
expressed as a function of the mutation rates from normal to 
initiated cells and from initiated to fully malignant cells, and of 
the rates of cell division and death of initiated cells. 

 The clonal expansion model has been useful in generating 
and/or evaluating hypotheses concerning the mechanisms of 
action of toxicants (e.g., [24,25]). However, it is important to 
note that the model does not specify the functional forms for 
dose responses for the intermediate events leading to cancer. 
Consequently, use of the model does not obviate the need to 
make assumptions concerning those dose-response shapes; the 
dose responses used in the clonal expansion model must be 
developed empirically. In fact, use of the model may complicate 
the evaluation of the dose response because dose-response 
models must be assumed for each of the upstream rates that are 
assumed to be dose-related. Thus, the clonal expansion model 
appears to have few if any advantages over fully empirical 
models in quantifying low-dose risk. It seems likely that any 
BBDR model would have similar limitations [26]. The general 
paucity of human data on intermediate disease processes, and 
the uncertainty in human exposures in most epidemiologic 
studies would also limit any potential theoretical advantages of 
BBDR models in estimating low-dose risk from epidemiologic 
data. 

ISSUES IN QUANTIFYING EXPOSURES IN 
EPIDEMIOLOGIC STUDIES 

 Risk estimates are equally dependent on measures of 
health effects and on measures of exposure. However 
exposure estimates are often much more uncertain than those 

for health effects. This is especially true when, as is usually 
the case, historical exposure data must be relied upon. Often 
the record of exposure levels at more distant times in the past 
is very spotty and the frequency and relevance of the 
measurements is less than desired. The methodology for 
measuring exposures may have evolved over the years, 
perhaps so much so that earlier measurements are not 
directly comparable to those obtained with newer and more 
accurate or otherwise improved techniques. Exposure 
reconstruction, both in terms of the measurement of 
concentrations as well as in relation to determining worker 
activities associated with specific jobs, is a subdiscipline of 
epidemiology in and of itself. 

 Errors and uncertainties in exposure estimates are 
particularly a problem in dose-response analysis. Exposure 
errors tend to attenuate a dose response and obliterate 
important details in the dose response. It was noted above 
that the high background risk of lung cancer suggested by 
the observed dose response in the Wittenoom, Australia 
cohort (Fig. 1) could be due to exposure misclassification. 
Exposure misclassification, even if unbiased, can cause a 
sublinear or threshold dose response to appear linear or even 
supralinear [27,28]. 

 Although statistical methods have been developed to deal 
with exposure uncertainty [28], to be most useful, these 
methods require information that is seldom available in a 
cohort study. They also require assumptions about the 
distribution of true exposures vis-à-vis measured exposures 
that may be difficult to defend. Alternatively, methods based 
on expert judgment can be used to quantify uncertainty in 
exposure, e.g., by positing upper and lower ranges for 
exposures. These ranges can be incorporated into the risk 
assessment to obtain corresponding ranges for risk. Although 
such subjective methods are not optimal, they may be the 
best alternative in many cases. It should be remembered that 
subjective methods are often required to develop any 
estimates of exposures  for example, in the earliest times of 
follow-up when exposure information was limited or 
unavailable, or in areas of a plant where exposures were not 
routinely measured. Thus, subjective methods for 
quantifying uncertainty in exposures may be commensurate 
with the subjective nature of the exposure measures per se. 
A subjective approach for quantifying uncertainty in 
exposures in asbestos-exposed cohorts [15] is described 
below in the example to illustrate meta analyses. 

META ANALYSES 

 When multiple epidemiologic studies are available, a 
meta analysis that combines data from different studies may 
be useful in representing the totality of the information 
available. If possible such an analysis should be based on the 
unprocessed data from each study, rather than from 
published summaries. Such analyses may require close 
collaboration from a number of different research groups. 
For example, authors of 10 occupational studies of cohorts 
exposed to silica collaborated in a meta analysis of silica-
induced lung cancer using the unprocessed data from each 
cohort [17]. 

 If the modeling approach used in the meta analysis 
incorporates background rates, as could be the case with 
Poisson regression, the model can estimate study-specific 
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background rates to account for differences between the 
different cohorts in such factors as ethnicity and smoking 
that might affect background risk. Cohort-exposure 
interaction terms can be included to test for heterogeneity in 
the exposure effect present in each cohort [17]. If significant 
heterogeneity is identified, possible causes should be 
identified. If it appears to be caused by some feature in 
particular studies that makes them less appropriate for 
estimating risk in the target population (e.g., if a study was 
conducted among a predisposed population) then these 
studies perhaps should be removed from the analysis. If no 
reason for heterogeneity is identified, then it may be better 
for the dose response to be developed from all of the studies, 
and allow the heterogeneity to contribute to the uncertainty 
in the final result. 

 However, tests for heterogeneity are not necessarily 
useful for selecting a dose-response model. For example, 
Steenland et al. [17] found that when cumulative exposure 
lagged 15 years was used as the exposure metric significant 
heterogeneity was identified among the potencies estimated 
from the individual studies (p = 0.02) but when log 
cumulative exposure lagged 15 years was used no significant 
heterogeneity was found (p = 0.34). The finding of 
significant non-homogeneity suggests that other sources of 
variation are present that are not adequately controlled. 
Nevertheless, the untransformed metric provided a better fit 
to the complete data set (log-likelihood = 21.4) than the log-
transformed metric (log-likelihood = 18.8). The fact that the 
poorer fitting metric did not show significant non-
homogeneity could be due to the fact that it is relatively 
inflexible which makes it unable to detect the non-
homogeneity. The metric based on untransformed exposures 
fit better both with and without the interaction terms 
included. The better fitting metric should be preferred on 
statistical grounds despite the significant non-homogeneity. 

 Attempts to develop a meta analysis from published 
summaries can encounter numerous problems. The 
individual analyses may have been conducted in mutually 
inconsistent manners, e.g., using different exposure metrics 
or dose-response models. An example is presented next of a 
meta analysis that incorporates data from numerous sources. 

EXAMPLE: A META ANALYSIS OF ASBESTOS-
RELATED CANCER RISK BASED ON PUBLISHED 

SUMMARIES THAT ADDRESSED FIBER SIZE AND 

MINERAL TYPE 

 Estimates of the potency of asbestos for causing lung 
cancer or mesothelioma obtained from different occupational 
cohorts vary widely. It has been hypothesized that these 
disparities are due to differences in the types of fibers 
(chrysotile or amphibole) or in fiber dimensions present in 
the different study environments. Berman and Crump [15] 
conducted a meta analysis involving 15 asbestos-exposed 
cohorts to test whether taking differences in fiber size and 
type into account could help to reconcile the different 
asbestos potencies obtained from different studies. 

 The exposures in the individual studies were quantified 
by phase contrast microscopy (PCM), which weights all 
fibers longer than five microns equally and does not  
 

distinguish fiber types. Because these exposure measures 
were inadequate for evaluating the effect of fiber type and 
dimension, it was necessary to develop size- and type-
specific exposure estimates for each environment. The 
fraction of asbestos exposure in each environment 
contributed by chrysotile was estimated using information 
available from the literature. Since these estimates were 
uncertain, uncertainty ranges for these fractions were 
developed, also using information available in the literature. 
Data were obtained from the published literature that 
provided size distributions of asbestos fibers in different 
occupational environments as measured by transmission 
electron microscopy (TEM). These size distributions were 
matched with the 15 epidemiologic studies based on being 
conducted in the same location or in a similar environment. 
These matched distributions were used to convert the 
original exposures in terms of fibers longer than five microns 
measured by PCM to estimates of exposures in different 
fiber size ranges as measured by TEM. Explicit factors were 
developed to account for different sources of uncertainty in 
the resulting exposure estimates, including uncertainty in a) 
PCM concentrations to which workers were exposed; b) 
converting from other measurement methods (e.g., midget 
impinger) to PCM; c) job-exposure matrices used in the 
original cohort studies; d) matching of size distributions to 
epidemiologic studies. Another factor was developed to 
account for uncertainties in case ascertainment 
(mesothelioma, in particular, was often misdiagnosed in the 
past) and limitations due to how data were presented in the 
published summaries. These factors were combined into a 
single factor, which was then combined with the statistical 
uncertainty for the lung cancer and mesothelioma potency 
estimates (KLs and KMs) to arrive at “uncertainty bounds” for 
each potency value. 

 These uncertainty bounds were incorporated in a meta 
analysis that implemented an extension of the U.S. EPA lung 
cancer dose-response model (Eqs. 1 and 2) and 
mesothelioma dose-response model (linear in exposure 
metric defined by Eq. 8) that allowed for fibers of different 
types and in different size ranges to have unique potencies. 
Tests of the hypothesis that amphibole and chrysotile were 
equally potent in causing mesothelioma were firmly rejected 
(p-value  0.001) in four tests that incorporated different 
fiber widths in the exposure metric. The corresponding tests 
for lung cancer were mixed, with p-values ranging from 
0.002 (significant) to 0.12 (not significant). The hypothesis 
that fibers between 5 and 10 m in length were equally 
potent as fibers longer than 10 m, versus the alternative 
hypothesis that the longer fibers were more potent, were 
close to significant for lung cancer (p-values based on 
different fiber widths ranged from 0.05 to 0.12) but less so 
for mesothelioma (p-values ranged from 0.07 to 0.44). 

 This study illustrates a method for dealing with 
uncertainty in exposures in cohort studies, as well as the 
utility of meta analyses in resolving important issues in risk 
assessment. However, it was limited by the quality of the 
data available, particularly the data on the distributions of 
fiber sizes in the different cohorts. It is hoped that better 
information can be obtained in the future through use of  
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archived air samples and regeneration of asbestos dust 
clouds that are representative of exposures in certain cohorts. 

ISSUES ARISING FROM RELIANCE ON DATA IN 
PUBLISHED SUMMARIES 

 Risk assessments often have to rely on summarized 
results from published reports of an epidemiologic study. In 
fact, rarely does a risk assessor have access to the detailed 
exposure and disease-outcome history for each member of an 
epidemiologic cohort. There are several issues, limitations, 
and concerns associated with using summarized data, often 
to the point that the published data cannot be the basis of any 
meaningful analysis. 

 A typical case is one in which the reported responses are 
categorized into N groups defined by non-overlapping 
ranges of one or more measures of or surrogates for exposure 
(e.g., average exposure intensity, duration of exposure, etc.). 
A common method for applying such data in a risk 
assessment is to first fit an exposure-response model (e.g., 
for relative risk, Eqs. 10 or 11) to such data using Poisson 
regression. Such an analysis requires summary values (e.g., 
means) for the exposures (and any other variables used in the 
model) in each cell of the categorization. The person-year 
weighted average exposure in a cell is the most appropriate 
such summary value. A common reporting problem is that 
no such summary values are provided in published material. 
This problem is especially serious for those categories that 
have open-ended definitions (e.g., “> 20 ppm-years”). Not 
only are average exposures in such categories particularly 
problematic to estimate from the published data, often these 
estimates are very influential to the modeling results. It 
would appear to be a simple matter to report such averages 
and this would greatly facilitate the use of summarized data 
in risk assessment. 

 In many reports of epidemiologic study results, such 
categorization is presented as a series of one-dimensional 
tables, each one showing, separately and independently, the 
responses observed in each group defined by one of the 
measures. For example there will be a table showing the 
responses observed in several groups defined by duration of 
exposure; there will be a separate table showing the 
responses in several groups defined by intensity of exposure; 
and so on. However, as discussed above and shown in the 
general form in Eq. (3), it is the integration of exposures 
over time, e.g., in its simplest form, the cumulative exposure, 
that is the appropriate metric for use in risk assessment. 
There is no way to estimate reliably such exposure metrics 
from a series of independent, one-dimensional tabulations. 

 Cross tabulation of exposure intensity and duration of 
exposure is a better, although still inadequate, summarization 
practice. Such cross-classifications allow some simple 
cumulative exposure calculations to be made. However, 
consider the hypothetical summarization of an epidemiologic 
study shown in Table 3. Even this simple example shows 
that the cumulative exposure groups that could be defined 
from such a cross-tabulation are not distinct from one 
another; only the groups on the diagonal of such tabulation 
do not overlap one another. If cumulative exposure is a 
suitable metric for assessing risk, then the groups defined by 
this cross-classification are not optimally defined. 

Table 3. Hypothetical Epidemiological Study Cross 

Tabulation of Exposure Intensity and Duration of 

Exposure: Computed Possible Ranges of Cumulative 

Exposures (ppm-yrs) within Each Group 

 

Duration of Exposure (yrs) 
Average Intensity of Exposure (ppm) 

1-10 10-20 

0.1 – 0.5 0.1 – 5 1 - 10 

0.5 – 1.0 0.5 – 10 5 - 20 

 

 The exposure of each individual in an epidemiologic 
cohort changes over time. As that individual progresses 
through their exposure history, different increments of time 
(e.g., year) are associated with different values for an 
exposure variable such as cumulative exposure. 
Consequently, counts of observed responses and the 
corresponding expected responses ought to be categorized by 
the person-year rather than by the individual. If expected 
values for the number of disease cases are included in the 
tabulations, those expected values should be based on the 
number of person-years contributed (by every individual in 
the cohort) to each of the exposure metric categories. In such 
tabulation a given individual will likely contribute person-
years to more than one category. Thus, it is important that 
tabular summaries of epidemiologic results report the 
number of person-years contributing to the values in each 
cell of the table. It is also important to realize that 
categorizations based on the final, end-of-follow-up value of 
the exposure metric for each individual are not appropriate 
for fitting a dose-response model. 

 In a cross tabulation as shown in Table 3, it is possible to 
determine which person-years from each individual should 
go in which cells of that table. But, a false distinction is 
made with respect to cumulative exposure; different person-
years of observation that have the same value for cumulative 
exposure can contribute observed and expected counts of the 
disease to different cells. Thus, a summarization that 
includes a tabulation or categorization by cumulative 
exposure would be more useful for risk assessment than a 
summary that includes a two-dimensional cross tabulation by 
duration of exposure and average exposure intensity. 

 But even were such tabulation by cumulative exposure 
available, there are other associated limitations. First of all, 
the risk assessment would be restricted to use of the 
cumulative exposure metric used in that tabulation. There 
would be no opportunity to explore the effects of lag times, 
of windows of exposures, or of other, different weightings of 
prior exposures on risk (e.g., as implemented in Eq. 3). 
Moreover, the risk assessor is not able to explore the effects 
on a Poisson regression of using different cut-points in the 
tabulation. – a potentially important issue in Poisson 
regression as cited earlier. On the other hand, the risk 
assessor would not be able to pursue Cox regression at all. 
Effects of other potentially informative covariables (e.g., 
gender, ethnicity, calendar year, age) could not be explored. 
It would be highly problematic to attempt to use published 
summarized data to develop models that utilize 
pharmacokinetically defined dose metrics, or models that 
incorporate mechanistic details of disease progression. 
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Because of such limitations, risk assessments should have 
available the unsummarized data from the underlying 
epidemiologic studies whenever possible. 

CONVERTING A RISK MEASURE FROM AN 
EPIDEMIOLOGIC STUDY TO ADDITIONAL RISK 

 As mentioned previously, an analysis of an 
epidemiologic cohort will often present results in measures 
of risk (e.g., relative risks) that are not directly relevant to a 
risk assessment. A relative risk of two for a very rare disease 
has a very different societal effect than a relative risk of two 
for a common disease such as heart disease. Thus, a measure 
of the absolute increase in risk (e.g., additional risk above 
background) is more useful in a risk assessment than a 
measure of the increase in relative risk. For example, the 
U.S. EPA will most often be interested in estimating the 
increased risk associated with a constant lifetime exposure to 
a member of the general U.S. population. OSHA may be 
interested in estimating the risk to a worker who is exposed 
to some potentially toxic agent during working hours, for a 
working lifetime from ages 20 through 65. In both of those 
instances, it is the lifetime increased risk associated with the 
exposure scenario of concern that must be determined. In 
these cases, the lifetime risk is the probability that, over an 
entire lifetime, an exposed individual will develop the 
disease of concern (or die from that disease if mortality is the 
endpoint of the analysis) minus the corresponding 
probability for an unexposed individual. 

 The method for determining such risks is known as the 
life-table approach [29] (details of this method are outlined 
in the Appendix). This technique requires estimates of the 
age-specific rates of disease (morbidity or mortality) for the 
condition of concern, as well as the all-cause background 
mortality rates for the population of interest in the absence of 
the exposure being evaluated. These all-cause rates typically 
are obtained from tabulated area-wide rates (e.g., rates for 
the U.S. population). If relative risk is the endpoint estimated 
from the epidemiologic data, then rates for the disease of 
interest must also be applied to convert from relative risk to 
additional risk (see Appendix). 

 The life-table approach uses the all-cause mortality rates 
to account for inter-current mortality which would remove 
an individual from the risk pool for the disease of interest. 
Background all-cause mortality rates should be modified to 
include the effect of the exposure (Appendix, Eq. A9). If 
mortality risk is being estimated, this modification consists 
of subtracting from the all-cause mortality rates the 
background mortality from the disease of interest, and 
adding back the modified rates predicted in the presence of 
the assumed exposure scenario. However, if one is 
estimating the lifetime risk of becoming sick, but not 
necessarily dying, from the disease of interest, the 
appropriate modification to the all-cause mortality rates is to 
subtract from these rates the background mortality rate from 
the disease of interest, but to add back the modified rates of 
disease morbidity (rather than mortality) predicted in the 
presence of the assumed exposure scenario. This 
replacement of mortality rates by morbidity rates is needed 
because when calculating the lifetime risk of becoming sick, 
but not necessarily dying, from the disease of interest, 
removal from the risk pool can be due to either death from 

some other cause or the occurrence of an incident case of the 
disease (whether or not the case results in death). 

 Since inter-current mortality is accounted for in the life-
table approach, theoretically there is no need to stop follow-
up at some age, e.g., by estimating additional lifetime risk 
by, say, age 80. However, in practice the calculation is 
implemented as a sum over a range of ages (Appendix Eq. 
A7), which must terminate as some age. Nevertheless, 
continuing the calculation to older ages (e.g., age 100) can 
give a better indication of the true “lifetime” risk, although 
the accuracy of such a calculation may be affected due to 
limited range of older ages (e.g., > 85 years) for which age-
specific rates are available. Experimentation with different 
formulae for calculating lifetime risk (e.g., Appendix, Eq. 
A4 and A5) and different upper age limits for the calculation 
can provide a sense of the relative contribution of the oldest 
ages to the risk estimate. 

 The life-table approach utilizes estimates derived from 
the analysis of the epidemiologic data under consideration, 
for example a relative risk estimate as a function of 
cumulative exposure. As discussed earlier, this typically 
involves values for certain parameters that are part of a 
function relating exposure to risk. An important requirement, 
sometimes overlooked when applying the life-table approach 
in practice, is to use the same functional form and the same 
exposure metric for the calculation of lifetime risk as was 
used in the analysis of the epidemiologic data. If a linear 
relative risk model using cumulative exposure lagged 10 
years was fit to the epidemiologic data, then that same 
functional form using that same exposure metric must be 
applied to the life-table calculations; the estimated model 
parameters from the epidemiologic data must be applied in 
that life-table calculation. 

 Even though the epidemiologic analysis will have been 
applied to a certain subpopulation (e.g., workers who are 
primarily exposed between the ages of roughly 20 and 65) 
there is an implicit assumption that the parameters derived 
from that analysis can be applied to the wider population for 
whom risk estimates are desired. In fact, it is most often the 
case that the relative risk is assumed to be the same at all 
ages (for a fixed value of the exposure metric) even when the 
estimation is based on a set of individuals of rather restricted 
age ranges. Of course, should any covariables, such as age, 
have been included in the analysis, so that that assumption 
need not apply, it is important to include the covariables 
(with the parameter estimates derived for them) in the life-
table calculations. 

 In the application of the life-table approach, one must 
specify an exposure scenario, e.g., age at first exposure and 
age at last exposure, and the (possibly age-dependent) 
exposure level during the exposure period. It should be noted 
that the effect of exposure will generally extend past the end 
of the exposure period. For example, if the exposure metric 
used in the epidemiologic analysis is cumulative exposure, 
any exposure, no matter how remote in the past, will have a 
constant and permanent effect at all ages subsequent to that 
exposure. For example, the effect on the disease probability 
at age 70 of exposure to X ppm for 1 year between the ages 
of 20 and 21 is the same as the effect of exposure to X ppm 
for one year between ages 60 and 61. One should consider 
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carefully the implications associated with any metric of 
interest. 

EXAMPLE: CONVERTING RELATIVE RISK TO 
ADDITIONAL LIFETIME RISK 

 We illustrate issues involved in calculation of additional 
risk using results from a study by McDonald et al. of 
workers exposed to chrysotile asbestos at a textile plant 
located in Charleston, South Carolina [30]. There have been 
several more recent studies of exposures and health effect 
among workers in this plant based on additional follow-up of 
the cohort [31-33]. This older study is intentionally used to 
emphasize that our purpose is solely to illustrate methods 
and issues and the results are not intended as up-to-date, 
reliable estimates of risk from exposure to asbestos. 

 The leftmost five columns of Table 4 (reproduced from 
Berman and Crump [5]) contain data recorded by McDonald 
et al. on the dose-response for lung cancer in this cohort. The 
first column gives the ranges of exposures in units of million 
particles per cubic foot–years (mpfc–y), as measured by 
midget impinger. The second column gives the average 
exposures assumed by Berman and Crump for these ranges. 
Although the assumption of an average of 130 mpcf y for 
the unbounded range of > 80 mpfc y is particularly 
problematic, no other data are provided by McDonald et al. 
to inform this assumption. The third column gives the 
corresponding mean concentrations in fibers/ml years as 
measured by PCM, and were obtained by multiplying the 
values in the second column by 6, a conversion factor 
derived from air samples collected side-by-side and analyzed 
by midget impinger and PCM. The fifth column contains the 
expected number of lung cancer deaths based on age-, race-, 
and calendar-year-specific death rates for South Carolina 
men. The sixth column contains the observed number of lung 
cancer deaths and the fourth column the corresponding 
standard mortality ratio (SMR = [observed deaths] / 
[expected deaths] x 100). The seventh and eight columns 

show the predicted numbers of lung cancer deaths obtained 
by Berman and Crump [5] using Poisson regression to fit the 
linear relative risk models defined by, respectively, (Eq. 1) 
with no separate background parameter and (Eq. 2) 
containing the background parameter  that allows for the 
possibility the background lung cancer mortality rate in the 
cohort differed from that in South Carolina men. In the 
implementation of the Poisson regression it was assumed 
that the observed number of lung cancer deaths in a cell 
(Table 4, sixth column) had a Poisson distribution with mean 
= [expected number (Table 4, fifth column)] x 
[RR (Eqs. 1 or 2)]. The parameters KL and  were estimated 
by maximizing the resulting loglikelihood [34] and 
confidence bounds for these parameters were computed by 
the profile likelihood method [35,36]. The accumulation of 
exposure involved a lag time of ten years as assumed in the 
USEPA model (Eqs. 1 and 2). However, rather than 
assigning exposures to person-years of observation and 
accounting for the change in a subject’s exposure over time, 
it appears that a single exposure measure (cumulative 
exposure at time of death or end of follow-up) was assigned 
to each subject. As discussed earlier, this approach is not 
optimal. 

 The estimate of  = 1.07 is not significantly different 
from  = 1.0 (p-value = 0.8), and the fit is acceptable using 
either value (p-value = 0.88 and 0.95). However the 
confidence intervals for the potency parameter, KL, are wider 
with  estimated. Although McDonald et al. did not have 
data on smoking habits in the cohort, it is reasonable to 
assume that their lung cancer rates could differ from those of 
South Carolina men in general due to differences in smoking 
habits, which would cause  to deviate from 1.0. 

 Accordingly, we will illustrate the calculation of 
additional risk from these data using the formulae in the 
Appendix and the estimate of KL = 0.010 (fiber/ml y)

1
(90% 

CI: 0.0044, 0.025) obtained with  estimated as 1.07. The 
exposure scenarios considered will be constant occupational 

Table 4. Fit of Relative Risk Model (Eq. 2) to Lung Cancer Mortality Data in a Cohort Exposed to Asbestos in a South Carolina 

Textile Mill [30] (from [5], Table B7) 

 

mpcf-yr (f-yr)/ml    Predicted 

Range Mean Mean   SMR Expected  Observed  = 1  = 1.07 

        

< 10  5 30 143.1 21.7 31 29.2 30.4 

[ 10 - 19 ] 15 90 182.7 2.7 5 5.6 5.7 

[ 20 - 39 ] 30 180 304.2 2.6 8 8.1 8.0 

[ 40 - 79 ] 60 360 419.5 1.7 7 8.6 8.4 

>= 80 110 660 1031.9 0.8 8 6.7 6.5 

Totals    29.5 59 58.1 59.0 

        

    = 1 (fixed)   = 1.07 (MLE)   

KL x 100    1.2  1   

(90% Confidence Interval) (0.75, 1.6)  (0.44, 2.5)   

Goodness of Fit P-value 0.95  0.88   

Test of H0:  = 1 P-value 0.80     
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exposure from age 20 through age 65 to E fibers/ml. These 
exposure scenarios will be denoted by DE, where E = 0.001 
fibers/ml or 1 fiber/ml. The number of days per year exposed 
will be assumed to be the same as in the South Carolina 
cohort; otherwise KL could be adjusted to account for the 
difference. 

 To calculate the background risk of lung cancer mortality 
we apply Eqs. A6 and A7 in the Appendix. For age-specific 
death rates for all causes (qa(i)) and for lung cancer (qc(i)) we 
use the corresponding death rates in U.S. males and females 
combined for years 1985 through 1990. These rates are 
compiled by five-year age intervals, and the rate for a given 
five-year interval is used for each year in that interval. 
Likewise, the rates for the oldest age interval (  85 years) are 
used for all ages older than 85 years. Applying these rates in 
Eqs. A6 and A7 we obtain an estimate for the background 
probability P(0) of dying from lung cancer by age 85 
(x1 = 20, x2 = 85) of 0.047 and 0.053 with no limit on age 
(x1 = 20, x2 >= 100). 

 As explained in the Appendix, estimating the probability 
of dying of cancer under one of these exposure scenarios 
uses the same formulae as in calculating P(0), only the rates 
qa(i) and qc(i) are replaced by modifications (Eqs. A8 and 
A9) that account for the effect of asbestos exposure from the 
assumed exposure scenario on these rates. For example, the 
term in the sum (Eq. A6) with i = 40 corresponds to the year 
of age 40, during which the average age is 40.5. Since the 
exposure metric used by McDonald et al. [30] was 
cumulative exposure lagged 10 years, the value of the 
exposure metric DE for this year is (40.5 – 10 – 20)E = 10.5E 
fiber/ml years. Consequently, using the linear relative risk 
model (Eq. 2) applied to the McDonald et al. data (Table 4), 
by (Eq. A8) qc(40) is replaced by qc(40)(1+ 10.5EKL) and by 
(Eq. A9) qa(40) is replaced by qa(40) + 10.5qc(40)EKL. 
Notice that since the  value is specific to the South Carolina 
cohort, and the U.S. rates used in the calculation are assumed 
to be appropriate for the target population, these calculations 
do not involve . With these replacements P(DE) is 
calculated using Eq. A6 and A7 and the additional risk under 
exposure scenario DE is estimated as P(DE) – P(0). Upper or 
lower confidence bounds for additional risk can be 
adequately approximated using the same calculation except 
replacing the estimate of KL by its upper or lower confidence 
bound. An Excel spreadsheet for making these calculations 
can be obtained from the authors by request. 

 Table 5 shows the resulting estimates of additional risk of 
lung cancer death from occupational exposure from age 20 
through age 65 to 0.001 fibers/ml or 1 fiber/ml. Both the 
point estimates of risk and the confidence bounds increase in 
proportion to the exposure level in this range of exposures 
(although that would not continue to hold as the exposure 
level increased indefinitely). Estimates of lifetime risk 
(computed with x2  100 years in Eq. A6) are about 12% 
larger than estimates terminated at age 80 (x2 = 80). This 
illustrates that it is not necessary to posit a maximum age for 
the risk calculation when using the life-table approach. 

CONCLUDING REMARKS 

 The focus of this paper has been on the application of 
data from cohort studies for the quantitative estimation of 
risk. Cohort studies are usually superior to other types of 

studies that may be available for a toxicant, at least as the 
basis for generating useful risk estimates. Cross sectional 
studies report the disease status of certain individuals who 
happen to be members of a specific subpopulation (e.g., 
workers in a particular industry) at a specific point in time. 
Such studies are plagued by difficulties related to timing: 
incident and prevalent cases cannot be differentiated. 
Therefore the exposures preceding the occurrence of the 
disease cannot be determined, and observation of members 
of the subpopulation at any particular time cannot account 
for drop-outs, who may very well have dropped out for 
reasons directly related to the exposure and/or the responses 
of interest. Case-control studies are often defined so as to 
avoid the some of the problems with cross sectional studies 
(e.g., there are no drop-out problems). But case-control 
studies seldom characterize exposure quantitatively 
(exposure is typically recorded as being present of absent). 
Moreover, without some specific design foresight (e.g., 
matching on age), there may be problems defining a relevant 
cumulative exposure metric for both the cases and the 
controls. There are also some technical issues related to 
using odds ratios estimated from case-control studies as 
estimators of relative risk that can be extrapolated to the 
general population of interest. However, when a more 
appropriate study is not available, a case-control study can 
possibly be used for a crude assessment of risk. In such a 
case, many of the issues discussed herein with regard to 
cohort studies would be applicable to a case-control study as 
well. 

 This paper has also focused on using data on binary 
endpoints (occurrence or non-occurrence of disease) to 
estimate the additional lifetime probability of disease from 
specified exposure patterns. Risk assessments can be 
developed for continuous endpoints, e.g., IQ decrements 
from exposure to methylmercury [37,38]. Methods similar to 
those discussed herein can be used to estimate useful 
measures of risk under specified exposure scenarios, e.g., the 
mean decrement in IQ or the addition fraction of individuals 
whose IQ falls below a certain value. Many of the issues 
faced in making such calculations are similar to those 
addressed herein. 

Table 5. Effect of Extending to Older Ages the Calculation 

(Eq. A6) of Additional Risk of Lung Cancer 

Mortality from Occupational Exposure to Asbestos 

Fibers from Age 20 Through Age 65. Based on Data 

and Calculations Reported in Table 4 

 

Fibers/ml 
Risk by Age of  

(x2 in Eq. A6) 
Risk/1000 (90% CI) 

0.001 80 years 0.017 (0.0072, 0.041) 

   100 yearsa 0.020 (0.0084, 0.047) 

1.0 80 years 17 (7.1, 40) 

   100 yearsa 19 (8.3, 46) 

aResults remain the same to two significant figures for all ages  100. 

 

 This paper has pointed out a number of potential 
limitations in a risk assessment that does not have access to 
the original data from an epidemiologic study, but is based 
only upon published summaries. We encourage risk 
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assessors and epidemiologists to seek arrangements by 
which all of the unsummarized data can be made available 
for a risk assessment. For studies that are supported by 
public funds, we believe that once the original investigators 
have had a reasonable time to publish their findings, public 
access to the unsummarized data should be mandatory. 

 As discussed herein, the greatest uncertainties in 
quantitative risk assessments usually result from uncertainty 
in exposures in the epidemiologic studies. Going forward, 
industrial hygiene programs, air and food monitoring 
systems, etc. should be developed with the needs of future 
risk assessment in mind. For exposures that have already 
occurred, various methods can be applied to obtain better 
estimates of exposures in certain cases, such as recreating 
earlier exposure conditions. Nevertheless, uncertainty in 
exposure will continue to be a major limiting factor to the 
accuracy of risk estimates. 
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APPENDIX 

Formulae for Calculating Additional Risk 

 The probability of disease occurrence (incidence or 
mortality) between ages x1 and x2 may be expressed as 

               (Eq. A1) 

where S(x) is the probability of survival to age x given 
survival to age x1 and h(x) is the instantaneous hazard of 
disease occurrence at age x. This integral can be 
approximated by a sum 

               (Eq. A2) 

where the age interval [x1, x2] has been divided into n 

subintervals with the i
th

 subinterval having width , i = 

1, …, n, p(i), representing the probability of disease 

occurrence in the i
th

 age interval, is calculated as 

p(i) = qc(i) ,                (Eq. A3) 

and S(i), representing is the probability of surviving to the 
beginning of the i

th
 age interval, given survival to age x1, is 

calculated as S(1) = 1 and 

  (Eq. A4) 

where qc(i) and qa(i) are the cause-specific rate of occurrence 
and all-cause death rates for the i

th
 age interval obtained from 

standard rate tables (29). An alternative to (Eq. A4) is given 
by 

              (Eq. A5) 

which encompasses slightly different interpretations of the 
standard rates. These two expressions generally agree 
closely. 

 If the subintervals correspond to individual years, (Eq. 
A2 and A4) take on the simplified forms 

               (Eq. A6) 

and 

              (Eq. A7) 

 Once the background rates qc and qa are selected, these 
equations completely determine P(0). These same formulae 
are used to calculate the probability of response, P(D), from 
a particular exposure pattern, D, by replacing the rates qc and 
qa by the appropriate modification that accounts for the 
model-predicted effect of exposure on these rates. The 
appropriate modifications depend upon the form of the dose-
response model estimated from the epidemiologic data, and 
the assumed exposure pattern. If the dose-response model 
predicts relative risk as a function of some exposure metric, 
then 

,               (Eq. A8) 

and 

qa(i) is replaced by 

  

                  (Eq. A9) 

where R(i) is the relative risk predicted by the dose-response 
model at age i from exposure pattern D. The latter 
replacement involves subtracting from the total death rate the 
background death rate from the disease of interest, and 
adding back this contribution adjusted by the effect of 
exposure. This expression assumes that mortality risk is 
being estimated. To estimate morbidity risk, the proper 
modification is to subtract from the total death rate the 
background death rate from the disease of interest, but add 
back the morbidity rate adjusted for the effect of exposure. 
This modification reflects the fact that when morbidity is the 
endpoint, a person is removed from the risk pool upon being 
identified as sick rather than when they die. 

 Once P(0) and P(D) have been calculated, the additional 
risk from exposure pattern D is computed as the difference 

P(D) – P(0)              (Eq. A10) 

 These calculations are illustrated using a particular dose-
response model and exposure metric in the main part of the 
paper.  
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