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Abstract: It is well recognised that low statistical power increases the probability of type II error, that is it reduces the 

probability of detecting a difference between groups, where a difference exists. Paradoxically, low statistical power also 

increases the likelihood that a statistically significant finding is actually falsely positive (for a given p-value). Hence, 

ethical concerns regarding studies with low statistical power should include the increased risk of type I error in such 

studies reporting statistically significant effects. This paper illustrates the effect of low statistical power by comparing 

hypothesis testing with diagnostic test evaluation using concepts familiar to clinicians, such as positive and negative 

predicative values. We also note that, where there is a high probability that the null hypothesis is true, statistically 

significant findings are even more likely to be falsely positive. 

INTRODUCTION 

 Significance tests cannot determine whether a null 
hypothesis is true or not, they can only indicate the 
probability of observing the data collected assuming the null 
hypothesis is true. When using significance tests to make 
decisions about a null hypothesis, two types of error can be 
made; rejecting the null hypothesis when it is true (type I 
error) and failure to reject the null hypothesis when it is, in 
fact, false (type II error). It is well recognised that low 
statistical power increases the probability of a type II error. 
In contrast, if two experiments are conducted and each of the 
null hypotheses are rejected (with the statistical tests used 
having the same p-value), it is sometimes assumed that the 
type I error rates are the same in each case. However, two 
factors may influence interpretation of such situations. First, 
if one of the null hypotheses was highly likely to be true, the 
result of this experiment should be treated with greater 
caution. Also, if one of the studies had substantially lower 
statistical power, this study has an increased probability of 
incorrectly rejecting the null hypothesis. Here we illustrate 
how interpretation of hypothesis tests may vary with 
statistical power and the probability of the null hypothesis 
being true through comparison with methods of diagnostic 
test evaluation. 

BACKGROUND 

 Discussion of the statistical power of medical studies and 
the potential effects of underpowered studies is widespread 
in the medical literature. Many published randomised trials 
[1-3] and observational studies [4] have low statistical 
power, or fail to calculate or report power analyses [3]. For 
example, a review of 127 randomised control trials in the 
surgical literature found that only half had sufficient power  
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to detect large differences between treatment groups [5]. 
Another review of negative clinical trials and experimental 
studies in the plastic surgery literature reported that 98% of 
studies with binary responses had inadequate power to detect 
a 25% change in effect, whereas 85% of studies with 
continuous outcomes had inadequate power to detect a mean 
difference of one standard deviation [6]. Startlingly, a review 
of 117 randomised trials investigating fracture treatment 
estimated the average power of studies to be 25% with a 
range of 2 to 99% [7]. 

 It is well recognised that low power increases the 
probability of type II error and this effect is sometimes cited 
by authors as a possible reason for no statistically significant 
result being identified. Underpowered studies have been 
labelled “scientifically useless”, principally because low 
statistical power increases the risk of type II errors (failing to 
observe a difference when the null hypothesis is actually 
false) [3, 8-9]. Indeed, numerous authors have suggested that 
it may be unethical to involve people in epidemiological 
studies or clinical trials that have low statistical power 
because such studies may be inadequately able to test the 
hypotheses of interest [8-10]. 

 However, there is second reason why studies with low 
statistical power are problematic and may be considered 
unethical: low statistical power leads to increased risk that 
statistically significant results will actually be falsely positive 
(for any given p-value). It is often assumed that the probability 
of a false positive significant result is given by the critical 
probability , usually set at 0.05. However, for many studies the 
false positive error rate will be considerably greater than the 
predefined critical probability [11]. This effect is greatest when 
the study power and/or the probability of the null hypothesis 
being false are low [12]. That is, there is an increased risk that a 
statistically significant, but surprising (i.e. improbable), result is 
actually “falsely positive”, and this effect is greatest in small 
studies. We illustrate this by comparing hypothesis testing with 
diagnostic test evaluation using concepts familiar to clinicians, 
such as positive and negative predicative values (and likelihood 
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ratios). Through comparison with diagnostic test evaluation we 
also emphasize the role that prior information or belief can play 
in our interpretation of hypothesis tests. 

HYPOTHESIS TESTS AND DIAGNOSTIC TEST 
EVALUATION 

 Hypothesis testing (HT), proposed by Neyman and 
Pearson [13] almost 80 years ago, provides a framework for 
the interpretation of experimental results (Table 1). This 
approach leads to the potential for two types of error; 
declaring that there is a difference between the groups, when 
in fact there is no (clinically important) difference (rejecting 
the null hypothesis when it is in fact true; type I or  error), 
and deciding there is no difference, when in fact a clinically 
important difference exists (type II or  error, which is 
equivalent to 1-power, where power is probability that a null 
hypothesis will be rejected when it is indeed false). 

Table 1. Possible Errors that May Arise when Testing 

Experimental Hypotheses 

 

Truth 
Experimental Results 

Difference Exists No Difference 

Reject H0 Power = 1 -    

Do not reject H0   - 

 = false negative rate or the probability of a type II error. 
 = false positive rate or the probability of a type I error. 

 

 There are similarities between this representation of HT 
with that of diagnostic test evaluation (Table 2) [14] and 
revising the common representation of HT illustrated in 
Table 1 to that commonly used for diagnostic tests further 
highlights the similarity in logic between these methods 
(Table 3). Indeed, the common representation of HT in Table 
1 may be misleading, as there is no indication of the 
denominator values used in the calculation of the type I and 
type II error rates. In contrast, from Table 3 it is clear that the 
type I error rate equals b/(b+d), or FP/(FP+TN), whereas the 
type II error rate equals c/(a+c), or FN/(TP+FN). 

 When considering diagnostic tests, numerous parameters 
familiar to clinicians can be calculated (Fig. 1). Several 
parameters, including the sensitivity, specificity and 
likelihood ratios for positive and negative test results, are 
intrinsic to the test, whereas the predictive values of the test 

results vary with disease prevalence. From Tables 2 and 3, it 
is evident that the probability of a type I error is b/(b+d), 
equivalent to 1-specificity of the diagnostic test. Similarly, 
the power of the study (i.e. 1- ) is given by a/(a+c), which is 
equivalent to the sensitivity of the diagnostic test. 

Table 2. The Possible Outcomes of Diagnostic Tests 

Compared to the True Disease Status 

 

Actual Condition 
Diagnostic Test Results 

Disease Present No Disease 
Total 

Positive a b a+b 

Negative c d c+d 

Total a+c b+d N 

a = true positive (TP); b = false positive (FP); c = false negative (FN); d = true negative 

(TN). 

 

Table 3. The Possible Errors Outcomes that May Arise when 

Testing Experimental Hypotheses, Represented in 

the Same Format as Traditionally Used for 

Diagnostic Tests 

 

Actual condition 
Experimental Results 

Difference Exists No Difference 

Total 

Reject H0 a b A+b 

Do not reject H0 c d C+d 

Total a+c b+d N 

a = true positive (TP); b = false positive (FP) = type I error; c = false negative (FN) = 
type II error; d = true negative (TN). 

 

 Importantly, when interpreting a diagnostic test result, 
knowledge of the sensitivity and specificity of a test provide 
only limited information. Of greater interest is the 
probability that a particular test result is true; the predictive 
values. The predictive value of a positive test is the 
probability that an individual that tested positive actually has 
the disease in question. Similarly, the predicative value of a 
negative test is the probability that someone with a negative 
test result is actually free of the disease. The predictive 
values are related to the test sensitivity and specificity 
through the disease prevalence. 

 

Fig. (1). The relationship between parameters associated with diagnostic tests and those associated with statistical testing.  = false negative 

rate or the probability of a type II error  = false positive rate or the probability of a type I error. 

Sensitivity (Se):      a/(a+c)   = 1-β 

Specificity (Sp):    d/(b+d)  = 1- α 

Positive predictive value (PPV):  a/(a+b) 

Negative predictive value (NPV):  d/(c+d) 

Likelihood ratios for positive test (LR+): (Se)/(1-Sp)  = (1- β)/ α 

Likelihood ratios for negative test (LR-): (1-Se)/(Sp) = β /(1- α) 
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 Similar issues arise when the results of an experimental 
study are interpreted. Whilst the sensitivity and specificity of 
the experiment can be calculated prior to the study (and is 
analogous to sample size calculation), estimation of the 
predictive value is less intuitive. However, it is the predictive 
values that are most revealing; what is the probability that 
there truly is an effect, given that the null hypothesis has 
been rejected, or that there is no effect, given that the null 
hypothesis has not been rejected? 

THE PROBABILITY OF THE NULL HYPOTHESIS 

 The characteristics of the diagnostic test (sensitivity and 
specificity) are related to the predictive values through the 
disease prevalence. What is the equivalent parameter to 
disease prevalence for the hypothesis test? Sterne and Davey 
Smith [15] consider this probability to be the prevalence of 
truly positive results amongst a large number of tests. Here 
they assume that the study in question is just one of a 
population of studies, where a certain proportion of studies 
are of null hypotheses which are false. 

 With regard to diagnostic tests, we can also consider the 
probability that a particular individual will be disease 
positive, prior to undertaking the test. Hence an individual 
with clinical signs of a disease and exposure to known risk 
factors may be considered more likely to have a disease than 
someone free of clinical signs and with no known relevant 
exposures. If a test were positive for each of these 
individuals, we would be more likely to believe the test 
result for the former, and consider that the latter test result 
may be more likely to be a false positive. In effect, we 
assume that these individuals come from two populations, 

the former with a higher prevalence of disease than the latter. 
In this way, the probability of disease before the test was 
performed (i.e. the prior probability) at the level of the 
individual is the prevalence of disease in a population of 
similar individuals. 

 Similarly, for hypothesis testing, we can use our 
knowledge of the hypothesis in question to estimate the prior 
probability that the null hypothesis is true (that there is truly 
no difference). Assuming we have formulated the hypotheses 
a priori based on existing evidence of an effect it is likely 
that we would conclude that the probability of the null 
hypothesis (i.e. of no effect) being true is low, and rejecting 
the null hypothesis will provide strong support for this 
conclusion. If, however, we have no good reason to form an 
opinion regarding the null hypothesis, such as when the 
finding was a “surprise” result amongst many measured 
variables, the fact that we reject the null hypothesis may not 
necessarily lead us to markedly change our conclusions 
about the variable in question. 

FALSE POSITIVE RATE OF STATISTICAL TESTS 

 Therefore, the predictive values of a statistical test (i.e. 
the probability that a particular conclusion is correct) are 
influenced by the prior probability of the null hypothesis. 
Fig. (2) shows the probability of a false positive conclusion 
when our study data indicates we should reject the null 
hypothesis, assuming a study with type I error rate of 0.05 
and type II error rate ranging from 0.2 to 0.8. It is clear that 
as the prior probability of a difference (i.e. H0 is false) 
increases, the chance of a false positive decision decreases. It 
is worth noting that the commonly accepted values for  and 

 

Fig. (2). The effect of varying the statistical power of a study on the probability of a false positive significant result (assuming alpha=0.05). 
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 (0.05 and 0.2) will result in fewer that 1 in 20 false 
positives only when the prior probability that there is a 
difference is in excess of approximately 50%. Hence, if the 
‘significant’ result is a chance finding, there may be an 
unacceptably high probability of a false positive conclusion. 

THE EFFECT OF UNDERPOWERED STUDIES 

 As previously noted, many published studies can be 
considered underpowered, and for these there is an increased 
chance that statistically significant results may, in fact, be 
false positive findings. Furthermore, many studies, even 
those with predefined hypotheses of interest, may also test 
numerous secondary hypotheses. Hence, even when there is 
a low prior probability that the principal null hypothesis is 
true, the prior probability that the secondary null hypotheses 
are true may actually be considerable. In such circumstances, 
there may be greatly increased risk that significant results for 
the secondary hypotheses are actually false positives. A 
recent study [16] observed that in 62% of the trials 
investigated, major discrepancies existed between the 
primary outcomes in the published reports compared to the 
original study protocols. In many of these there was evidence 
of a preference for statistically significant results to be 
published. Similarly for observational studies there is 
evidence of publication bias [4]. Hence, there is a substantial 
risk that the effects described here may combine with 
publication and reporting bias such that the (false) positive 
results of underpowered studies are published, but the true 
results of larger studies (i.e. where there was no effect) may 
be less likely to be published. 

CONCLUSIONS 

 Whilst ethical issues associated with the increased risk of 
type II error with underpowered studies have been well 
documented, here we illustrate that such studies are also at 
increased risk of type I error, should the null hypothesis be 
rejected. The logic behind this statement can be illustrated 
through comparison of statistical testing with diagnostic test 
evaluation. There are many circumstances where the prior 
probability of the null hypothesis being true is high, not least 
of which arises during the analysis of secondary outcomes. 

These results indicate that statistically significant findings 
from studies with small sample sizes should be treated with 
increased scepticism, particularly where there is a reasonable 
chance that the null hypothesis is true. 
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